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ABSTRACT 
Online crowds, with their large numbers and diversity, show 
great potential for creativity. Research has explored different 
ways of augmenting their creative performance, particularly 
during large-scale brainstorming sessions. Traditionally, this 
comes in the form of showing ideators some form of 
inspiration to get them to explore more categories or generate 
more and better ideas. The mechanisms used to select which 
inspirations are shown to ideators thus far have not taken into 
consideration ideators’ individualities, which could hinder 
the effectiveness of support. In this paper, we introduce and 
evaluate CrowdMuse, a novel adaptive system for supporting 
large-scale brainstorming. The system models ideators based 
on their past ideas and adapts the system views and 
inspiration mechanism accordingly. We evaluate 
CrowdMuse over two iterative large online studies and 
discuss the implication of our findings for designing adaptive 
creativity support systems. 
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Creativity; brainstorming; crowd; adaptive systems. 
ACM Classification Keywords 
• Information systems➝ Collaborative and social 
computing systems and tools • Human-centered 
computing➝ Collaborative and social computing systems 
and tools  
INTRODUCTION 
Online crowds show great potential for creativity. This is in 
great part due to the large numbers and diversity of 
participants [8,11]. In small groups, the main contributor to 
an increased performance is synergy, that is, when one 
person builds on ideas proposed by others [8]. These 

synergistic ideas would hardly occur in individual ideation. 
Therefore, one might expect that by adding hundreds more 
people to ideation, the likelihood of synergy happening 
would only increase.  

Nonetheless, simply recruiting large numbers of ideators is 
not enough to ensure a creative output. The same scale and 
diversity that can boost ideation also presents challenges that 
hinder the creative output of crowds. The sheer amount of 
ideas generated can hinder synergistic performance, since an 
individual is unlikely to be able to read all of the ideas (thus 
possibly missing the one that could inspire them), much less 
pay attention to them, which is a requirement for influence 
[10,18]. Therefore, large-scale brainstorming sessions need 
to be appropriately designed and supported. 

Research has attempted to do that in different ways, usually 
by withholding the entire solution space (all the ideas 
generated so far) and only exposing ideators to 
inspirations—usually a short text snippet meant to inspire 
further ideas. These inspirations have taken different forms. 
For example, Chan, Dang, & Dow [4] employed facilitators 
to generate inspirations (e.g. questions to promote reflection) 
during an ideation session. Siangliulue et al. [23] attempted 
to inspire ideators by showing them a small set of ideas 
chosen either for their diversity (ideas that differ 
significantly among themselves) or creativity. Finally, in our 
previous work we attempted to increase the effect of 
inspirations by adding a small task (e.g. rating the idea) to 
boost attention to the ideas [12].  

The common thread between these examples is that they 
focus on the kind of inspiration being shown rather than on 
the ideator it is being shown to. In other words: should the 
same inspiration be presented to two different ideators? 
Could individual differences between ideators affect how 
effective an inspiration is? The creativity literature points 
towards an answer to these questions. Theoretical models of 
idea generation propose that individuals differ on which 
concepts or categories they generate ideas [3,18]. This means 
that each ideator is more likely to focus on some areas (i.e. 
idea categories) than others. An inspiration strategy that does 
not take these individualities into consideration may be 
missing out on leveraging ideators’ unique strengths. For 
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example, if an ideator is more familiar with ideas in category 
A than those in B, showing ideas in category B may not 
effectively inspire him or her to come up with new ideas.  

In this paper, we explore how to tailor inspiration selection 
to individual ideators. The overarching research question 
explored here is: “How can we adapt inspirations to ideators 
in order to improve ideation performance?” To do so, we 
present CrowdMuse, a system that models ideators based on 
their categories of ideation and adapts itself to improve 
creative performance. We begin by describing the literature 
that inspired this work. We then introduce CrowdMuse, 
describing how it functions in detail, and relating its design 
back to the literature. We finish by describing two large-scale 
online studies in which we evaluate CrowdMuse and its 
adaptive mechanism. We make the following contributions: 

• We introduce CrowdMuse and the methods it uses 
to model ideators and adapt to them; 

• We validate the system’s effectiveness method in 
two studies, demonstrating that an adaptive system 
can improve the breadth of ideation, given an 
appropriate categorization of the inspiration pool. 

RELATED WORK 
Idea Generation Models 
There are two models of idea generation central to this paper. 
The first model is the Search for Ideas in Associative 
Memory (SIAM) [17–19]. This model describes idea 
generation in terms of memory recall. The assumption is that 
there are two memory systems: working memory (WM) and 
long-term memory (LTM). LTM is essentially unlimited, 
and is organized in images, which are central concepts (e.g. 
a computer) along with associated features (e.g. has a CPU, 
has a storage unit). WM is where conscious processing takes 
place but is quite limited. An additional component worth 
noting is the search cue, existing in the WM, which serves as 
the cue to search the LTM. This search cue is comprised of 
items such as the problem definition, previous ideas, or 
personal experiences.  

With these components in place, idea generation is then 
described in terms of two loops between the two memory 
systems. The first loop is the image retrieval loop, where an 
image is retrieved from LTM and loaded into WM. At this 
point, the image and associated features are available as the 
basis for the second loop, the idea production loop. The 
individual can now produce ideas using the image, its 
features, and whatever is on the search cue. This goes on until 
no more ideas can be thought of using the current image. At 
this point, the individual reverts back to the first loop, 
searching for another image to be loaded into WM. This 
process follows until no more images can be retrieved, 
ending idea generation. 

The second theoretical model is the matrix model [3,21]. 
Operating at the level of categories of ideas, it follows the 
notion that there are categories that are more or less likely to 
be visited by an ideator. This concept is represented through 

a matrix of category transition probabilities. Rows and 
columns represent different categories. Each cell contains a 
number between 0 and 1, representing the probability of 
transitioning from a category (row) to another (column). The 
diagonal of the matrix, therefore, represents the probability 
of staying within the same category (similar to SIAM’s idea 
production loop), and the other cells represent the probability 
of transitioning to a different category (similar to SIAM’s 
image retrieval loop). While this model does not explain the 
flow underlying idea generation in such detail as SIAM does, 
its matrix representation makes the transition between 
categories more concrete. In this work, we make use of both 
models to inform our design and adaptive mechanisms, as 
will be described later. 
Enhancing Crowd-Scale Brainstorming 
Given the potential for promoting the creative potential of 
crowds, research has already examined ways of supporting 
brainstorming sessions at a large scale. This has been done 
through a set of distinct approaches.  

At the most basic level, brainstorming has been enhanced 
simply by showing other ideas to ideators. The approaches 
differ in how they choose the ideas or how they show them. 
For example, selecting a set of diverse or creative ideas can 
improve their effects over random sets of ideas [23]. The 
timing and delivery method of these inspirations can also 
affect their efficacy, showing benefits to giving users a 
choice of when to receive inspirations or in employing a 
smart strategy for choosing the right moment to do so [25]. 
Finally, increasing the attention to the inspirations ideas, 
such as by asking questions about the inspirations, can also 
improve performance under certain circumstances [12]. 

Since simple exposure to other ideas can bring its own set of 
issues (e.g. fixation [15] or limitation of the number of 
categories surveyed [22]), others have proposed ways of 
inspiring users through abstractions of other ideas or features 
of the problem. For example, previous work has found some 
advantage to using machine-generated abstractions of others’ 
ideas as an inspiration [5]. Alternatively, crowd workers can 
be used to identify and generate schemas to be used as 
inspirations [27,28]. Another way in which abstractions can 
be used is through real-time facilitators. This was tested by 
Chan, Dang, & Dow [4] through their IdeaGens system. 
They found that by using stimulating strategies such as 
simulations (asking ideators to imagine scenarios), 
facilitators can improve ideator’s fluency and creativity. 
Features of the ideation problem can also contribute, such as 
by identifying domains of expertise relevant to it, or 
presenting ideators with constraints [29,30]. 

A final approach considered is that of highly structured 
human-powered processes. For example, it has been shown 
that a human-powered genetic algorithm, in which ideas are 
mixed and selected through several iterations, can result in 
greater creativity of later ideas [31]. Even more structured, 
BlueSky employs a crowd-powered algorithm to evenly 
contribute to the solution space and reduce duplicates [14]. 



Current approaches have not yet considered adapting 
inspirations to individual ideators according to the models 
previously discussed. This work aims to take a first step in 
filling this gap by proposing one way of applying theories of 
creativity to ideator modelling and adaptation.  
THE CROWDMUSE SYSTEM 
CrowdMuse, (Figure 1) is comprised of two main views. The 
first, on the left, is the idea workspace (#1). The purpose for 
this view is to allow users to explore and manipulate existing 
ideas. At the top of the view, a toolbar displays several 
choices. On its left, there are two buttons, one for displaying 
all the user’s own ideas, the other for displaying the user’s 
favorite ideas. An idea can be favorited by hovering over it 
and clicking the favorite button (see #2 in Figure 1). At the 
right of the toolbar, you find a description of what is 
currently being shown in the workspace (e.g. “Showing your 
favorite ideas” or “Showing ideas with tag food”, followed 
by a count of the number of ideas being displayed and a help 
button (if clicked, a short description of the view is shown). 

The workspace enables two other kinds of actions: 
combining and refining ideas. Ideas can be combined by 
dragging one idea onto another. This opens a popup showing 
both ideas, and a space for typing the combined new idea. An 
idea can also be refined by hovering over it and clicking on 
the refine button (Figure 1, #2). A popup will then show up 
with the idea to be refined, allowing the user to edit its text 
and submit the updated version. These mechanisms were 
added in accordance to the principles of brainstorming—in 
which participants are encouraged to build on one another’s 
ideas [20]—and findings from research, which have 
demonstrated the importance of combinations and 
subsequent iteration [6,7,9,16,26].  

The second view is the solution space, occupying most of 
the right side of the interface (Figure 1, #3). By using a 
matrix form of visualization [1], the purpose for the solution 
space is to provide an overview of which categories have 
been thoroughly explored and, conversely, those which are 
yet to be explored. This overview is also important so that 
ideators are not completely blind to other ideators’ 
performance and can at least try to be more consistent with 
their tagging of ideas. The solution space is represented as an 
n x n matrix in which the rows and columns correspond to 
the idea categories developed so far. The color of the cell 
indicates how many ideas have been developed at the 
intersection of two categories—the darker the cell, the more 
ideas have been developed within that intersection. Clicking 
a cell will open all ideas at that category intersection in the 
idea workspace.  

 
Figure 2 The pop-ups for adding a new idea (left) and when 
clicking the inspiration button (right). 

Figure 1 The CrowdMuse system has two main views: the idea workspace (1) allows users to view and manipulate ideas by 
hovering over them (2); and the solution space (3) provides an overview of the density of ideas developed for each tag. 



Users can add ideas by clicking the “new idea” button at the 
top of the UI. When adding a new idea, the user is prompted 
to pick at most two categories for the idea (based on 
previously used categories), or to suggest new ones. To the 
right of the new idea button is an inspiration button, which 
when clicked presents three ideas along with a small 
microtask on each (e.g. “rate the idea’s originality and 
usefulness”). The microtasks are used to increase the 
attention to ideas and consequently their effect on ideators 
[12]. This mechanism is similar to other studies described in 
the literature, employing a pull model where inspirations are 
requested by ideators through the click of a button [4,12,25]. 
Figure 2 displays both popups. 
Adaptations 
The system’s purpose is to enhance idea generation by 
prioritizing categories that could be inspiring to an ideator. 
Categories in the CrowdMuse system are user-generated 
groupings of the ideas. This prioritization approach contrasts 
with current approaches, in which inspiration selection does 
not take the ideator into consideration, instead being, for 
example, randomized [12], chronological [4], or focusing on 
aspects of the inspiration set (e.g. set diversity) [23,24]. 

As described in the related work, ideators have unique 
cognitive structures [3,18]. Generally, this means that 
ideators are more likely to come up with ideas within some 
categories rather than others, and the ideas may be somewhat 
temporally clustered together (i.e. ideas of similar categories 
may be suggested temporarily closer to each other). 
Therefore, leaving the selection of inspirations to chance 
may cause them to fail in inspiring (or having as much effect 
on) ideators due to two factors. First, the ideator is not highly 
fluent in the chosen categories. This is best visualized with 
the matrix model. Say, for example, that an ideator has just 
generated an idea in category A, and from there can switch 
to categories B, in which she is highly fluent (that is, she has 
high within-category likelihoods)—and C, in which she is 
quite inarticulate (that is, she has low within-category 
likelihoods). In this scenario, an inspiration that touches on 
category B is much more likely to yield positive results than 
an inspiration on category C.  

The second factor is that the inspiration can break an 
ideator’s train of thought; as proposed by the SIAM model, 
when ideators generate ideas, they have a concept loaded in 
their short-term memory (STM). This concept stays loaded 
until they repeatedly fail to generate more ideas with it. 
However, if the ideator is exposed to an inspiration that does 
not match their currently loaded concept, it may interrupt 
their train of thought, in practice curtailing their fluency 
within that category (namely, their depth). Therefore, 
existing research on idea generation shows that inspirations 
must be carefully chosen to not cause more harm than good. 

In practice, the choice of ideas has been shown to influence 
performance. For example, [23] compared showing random 
ideas with an explicitly diverse set of ideas, finding the 
diverse set to yield greater diversity in idea generation. They 

also found a set of more creative inspirations yielding more 
creative results. In our previous work, we also found that 
making the set of inspiration ideas similar among themselves 
yielded either no or negative effects [12]. The effect 
dramatically changed when we changed the selection 
mechanism to be completely randomized, causing the 
inspirations to improve the breadth of ideation in some cases. 
Thus, in practice we find that choosing the right ideas for 
inspirations is important.  

Therefore, the CrowdMuse system implements two forms of 
adaptations: explicit and subtle adaptations. In this 
subsection, we explain both types of adaptations based on the 
past literature. How these adaptations are powered (e.g. how 
does the system choose a new category to suggest) is 
addressed in the next subsection, User Modeling. 

Explicit adaptations are designed to be the most influential 
form of inspiration. They exist in the inspiration mechanism, 
which presents users with three ideas, each with an 
accompanying rating microtask. Following previous 
research, the goal is for the three ideas to be diverse [23]. 
However, here the ideas are chosen based on an underlying 
user model that is generated throughout the ideation session. 
Each time an inspiration is requested, the system will show 
the user one idea from each of the following categories: 1) 
an idea of the same category as the user’s last generated idea; 
2) an idea of a category that is adjacent to the user’s current 
category; and 3) a new category that has not yet been visited 
by the user.  

These categories have been selected to curb the two points of 
failure described in the SIAM model: failure to generate a 
new idea within the current category, and failure to retrieve 
a new category [18]. The first failure is addressed by showing 
the user their current category, attempting to inspire further 
ideas within it (effectively increasing fluency within the 
category). The second failure is addressed firstly by showing 
users an adjacent category, which is an idea category the user 
has transitioned to (from their current category) in the past. 
But it is possible that this adjacent category, which has been 
visited in the past, will not yield any new ideas. Furthermore, 
if the system is capable only of suggesting categories the user 
has visited in the past, it is possible that it would hinder the 
ideator’s breadth by forcing their attention to those 
categories. Therefore, the system presents ideators with an 
idea within a category that has not yet been explored by the 
user. This idea, however, is not random, rather it is based on 
categories explored by similar users. In other words, the 
system acts as a recommendation system, suggesting new 
categories based on other similar ideators.  This is explained 
in more detail in the next subsection (User Modeling).  

The system also performs an ongoing subtle adaptation of 
the solution space by ordering its rows and columns. We call 
this ongoing reordering of the matrix. This reordering 
happens every time the user submits a new idea. The purpose 
for adapting this view is to guide users’ attention to the most 
relevant categories. Since the goal for the solution space is to 



give users an overview of all developed ideas, this adaptation 
can be seen as a form of tailoring example searching in a way 
that augments creativity [13]. The categories are ordered 
following the same logic as that of explicit adaptations. It 
orders the solution space, from right to left and top to bottom, 
in the following way: 1) current category; 2) all adjacent 
categories, ordered by most to least common; 3) inferred new 
categories; 4) other previously visited non-adjacent 
categories, sorted by most to least frequent; 5) any other 
category that has not yet been visited.  

In comparison to the explicit interventions, this ongoing 
adaptation has the advantage of encoding more information, 
such as allowing users to explore overlaps between 
categories that are meaningful to them. It also retains user 
agency: rather than pushing three categories deemed useful 
to the user, they can choose what to explore in more detail. 
The downside, however, is that with more information being 
presented at once, ideators are less likely to pay attention to 
the ideas they encounter and therefore reduce the effect the 
ideas can have on them. This may be particularly meaningful 
when compared to the explicit inspirations, which employ 
microtasks to increase attention to ideas.  
User Modeling 
The adaptations described above are powered by an 
underlying user model. This model is inferred based on a 
user’s behavior within the system. Whenever users add an 
idea, they are asked to choose one or two categories for their 
idea (see Figure 2). This selection is done through a list of 
existing categories, which the system uses to update the 
user’s model. Based on the previous discussion on the 
adaptations supported by the system, the user model must be 
able to inform the system about four kinds of categories: 

1) What is the user’s current category? This is determined 
simply by looking at the last idea added by the user. The 
idea’s category is considered to be the currently loaded 
category. If two categories were used, both are considered to 
be currently loaded. 

2) From the current category, where is the user likely to 
move to? While the user ideates, the system keeps track of 
category transitions through a transition graph: a directed, 
weighted graph, in which each node represents a category. 
When the user adds an idea, the system creates an edge 
between the categories for the latest idea and the preceding 
ones. The weight of the edge increases as that transition is 
repeated. This is how the system determines the set of 
adjacent categories. 

3) In which categories is the user most fluent? While the 
user ideates, the system also creates a category vector to keep 
track of the number of ideas the user adds for each category.  

4) What are new categories the user has not yet visited 
but in which they are likely to be fluent? To infer this 
information, we draw from recommender system techniques 
[2]. The system uses the user’s category vector to identify 
other ideators that have a similar ideation pattern to their own 

by calculating the correlation between the user’s vector and 
other ideators’. We select the top five users with the highest 
correlation to make the inferences. Then, for every category 
the user being analyzed has not yet visited but that the other 
matched users have, the system calculates the average 
fluency. The category with the highest average is considered 
to be the one with the most potential for visitation. 
STUDY 1 
We evaluated the system through an online study on Prolific 
(www.prolific.ac). We limited participants to only those with 
85% approval rating and above 18 years of age. We also 
prevented participation from anyone who took place in any 
pilots that we had run in the past. All data was collected 
across three one-day sessions, with two weeks between the 
first and last sessions. 

In this study, we focus on evaluating whether the 
combination of the two adaptive features in CrowdMuse 
improves three well-recognized brainstorming metrics: 
fluency (number of ideas), breadth (how many categories are 
surveyed by one ideator), and depth (within category 
fluency) of ideation. We establish the following hypotheses: 

H1. An adaptive system will increase the number of ideas 
over a non-adaptive system. By tailoring inspirations to 
categories that are more likely to be visited by an 
ideator, we expect them to be more effective at sparking 
that new idea that would otherwise have not been 
generated, either in a new category (thus increasing 
breadth) or in a previously visited category (thus 
increasing depth). The result from this is an increased 
overall number of ideas. 

H2. An adaptive system will increase the breadth of idea 
generation. As postulated in H1, an adaptive system will 
increase overall fluency. We argue that an adaptive 
system will increase this breadth by showing users their 
inferred categories, that is, categories they have not yet 
visited but that are likely to be relevant to them based on 
similar ideators. In the SIAM model, this equates to 
delaying the failure in retrieving a new category [18].  

H3. An adaptive system will increase the depth of idea 
generation. We hypothesize that by showing ideas in the 
current and adjacent categories, an adaptive system will 
increase the number of ideas suggested within each 
category, yielding an overall greater depth. In the SIAM 
model, showing the current or adjacent categories is an 
attempt to delay failure in the phase of idea generation 
within a given category or in another previously ideated 
category [18].  

A secondary goal of the study was to more thoroughly test 
the system to determine how to improve it for future use. To 
do so, we individually evaluate each adaptation type (subtle 
and explicit) when testing our hypotheses.  
Method 
We posted a study request through the Prolific platform. 
Upon accepting the study, participants went through a short 



tutorial explaining each part of the system individually. This 
tutorial also introduced the brainstorming problem with the 
following description: “Prolific is a great website for 
researchers and participants alike. However, there is always 
room for improvement. Come up with as many ideas you can 
to improve Prolific in any way you can think of. Be as specific 
as possible in your ideas”. After completing the tutorial, a 
15-minute timer would appear on top of the screen and start 
to count down. After the timer was done, a pop-up screen 
appeared with a link to a final questionnaire asking about 
demographics, their experience with the task, and 
perceptions of the system.  

We used a between-subject 2x2 full factorial design with 
participants being randomly assigned to a combination of 
two factors: 

1. Solution space (random/adaptive): rows and 
columns could be ordered randomly, or according 
to the user’s model. 

2. Inspiration mechanism (random/adaptive): 
inspirations could be selected randomly, or 
according to the user’s model. 

Idea Pool and Categorization 
Since the adaptive mechanisms are powered by data from 
other users, we had to pre-populate the system with users and 
ideas for this first study. This data came from several pilots 
we ran on Prolific, which included 49 users and 189 ideas, 
organized across 54 categories. Categories were determined 
by the pilot ideators themselves, who could tag their ideas 
when adding them. One of the authors of this paper created 
the final list of categories from these user-generated 
categories, with redundant categories collapsed (e.g. the 
categories chat, forum, and email were all collapsed under 
communication). Thus, when selecting an adaptive 
inspiration, one of the 189 ideas would be presented based 
on the match between the desired inspiration category and its 
own category. New categories added by study participants 
during the study sessions were not visible to anyone other 
than the participant who added them. Therefore, all 
participants were exposed to the same set of categories 
throughout the duration of these studies. 
Metrics  
We primarily evaluate the effects on brainstorming 
performance through metrics related to breadth (how many 
idea categories a user has visited) and depth (the fluency 
within a given category). To do so, we use two metrics for 
each of these dimensions. The first metric comes from a 
manual categorization of the ideas generated, completed by 
two researchers (including one of the authors). At the 
beginning of this categorization, both researchers worked 
together to define the core categories. As the categorization 
progressed and no new categories started to appear, the 
researchers started to work independently, only occasionally 
discussing where some ideas should be assigned; 70% of 
ideas were categorized in this manner. The remaining ideas 
were categorized by a single researcher. Categorization was 

blind to the ideator’s experimental condition. We then 
extracted breadth as the number of categories visited. Depth 
is defined as the largest number of ideas a user generated 
within a single category.  

Additionally, following previous research, we calculated a 
metric based on Latent Semantic Analysis (LSA), using a  
corpus from [12] (comprised of ideas in a similar task on 
Amazon’s Mechanical Turk, n=7199) as well as ideas from 
our pilots (n=591). Following the approach presented in [12], 
we built an ideation tree based on the similarity between 
ideas, in which each node is an idea attached to its most 
similar parent [12]. From this tree, breadth is derived as the 
number of children nodes of the root, and depth as the 
maximum number of nodes in one branch. We refer to these 
metrics as tree breadth and tree depth.  

By using two different metrics, we avoid the bias introduced 
by a single type of metric. Each metric has its own tradeoffs. 
We expect the manual metrics to be more accurate, but they 
are very subjective—different people would likely come to 
different categorizations. The tree metrics, on the other hand, 
do not depend on subjective judgements, but they are likely 
more inaccurate, especially due to the origin of the corpus 
used to generate them. It should further be noted that both 
metrics are highly correlated to the user’s fluency—someone 
who comes up with 20 ideas will very likely have higher 
breadth and depth numbers than someone who comes up 
with 2. Thus, in our analysis we control for fluency.  
Results 
In total, 115 Prolific users performed our study (42.6% 
female). Most participants described themselves as non-
Hispanic White (75%), with the UK having the largest 
participation (25%). Participants were randomly assigned to 
conditions, but since some users quit the study before 
finishing it, the distribution across conditions was not 
perfectly balanced. We had 32 participants with neither 
adaptive mechanisms, 25 with only an adaptive inspiration 
mechanism, 28 with only an adaptive solution space, and 30 
with both adaptive mechanisms. 
H1: Fluency did not Change Across Factors 
Our first hypothesis was that an adaptive system would 
increase the fluency by increasing both breadth and depth of 
ideation, since the adaptations would aid users in curbing 
idea generation failures in both loops of the SIAM model. To 
evaluate this hypothesis, we calculated a two-way ANOVA 
with fluency as outcome variable, and the presence of an 
adaptive solution space and the presence of an adaptive 
inspiration mechanism as fixed factors. We include the 
interaction between factors in the model. There was no 
significant main effect of the adaptive solution space, 
F(1,111)=1.541, p=0.217, or the adaptive inspiration 
mechanism, F(1,111)=0.003, p=0.957. We did, however, 
find a marginally significant interaction effect between 
factors on the fluency of participants, F(1,111)=3.74, 
p=0.056. Figure 3 demonstrates this interaction, along with 
the mean fluency values.  



 
Figure 3 Interaction between an adaptive solution space and 
adaptive inspirations on fluency. Error bars represent a 95% 

confidence interval. 

H2: Adaptive Inspirations Increased Tree Breadth 
We first evaluated the manual breadth metric by running an 
ANCOVA with breadth as the outcome variable, adaptive 
solution space and adaptive inspirations as fixed factors, and 
fluency as a covariate. We found no effect of adaptive 
inspirations, F(1,110)=2.721, p=0.102, adaptive solution 
space, F(1,110)=1.482, p=0.226, or the interaction, 
F(1,110)=0.358, p=0.551. 

We then evaluated tree breadth as an outcome variable. 
Because there was a significant interaction between fluency 
and one of our independent variables, we calculated a Mixed 
Generalized Linear Model (GLM), with the breadth metric 
as outcome variable, the presence of an adaptive solution 
space and an adaptive inspiration mechanism as fixed 
factors, and fluency as a covariate. We included two-way 
interactions between each factor and fluency. We found a 
significant interaction between adaptive inspirations and 
fluency, F(1,108)=7.949, p = 0.006, showing a stronger 
positive effect of adaptive inspirations on tree breadth as 
fluency increases. Pairwise comparisons show average and 
high fluency ideators who were exposed to adaptive 
inspirations outperformed those with randomized ones. 
Table 1 details the marginal means for the breadth metric 

across different fluency levels. We found no interactions 
between an adaptive solution space, F(1,108)=0.706, 
p=0.402, nor between the two main factors, F(1,108), 
p=0.286. There were also no main effects of an adaptive 
solution space, F(1,108)=0.187, p=0.666, or an adaptive 
inspiration mechanism, F(1,108)=0.308, p=0.308. 

H3: No Effects on Depth  
Our third hypothesis was that by emphasizing ideas in their 
current or adjacent categories, ideators would likely be able 
to generate more ideas within those categories, therefore 
increasing depth. To evaluate this, we estimated a negative 
binomial regression, since the data follows a negative 
binomial distribution. We use depth as an outcome variable, 
presence of an adaptive inspiration mechanism as factor, and 
fluency as covariate. We found no significant effect on depth 
of either adaptive solution space, Wald Chi-Square=0.418, 
p=0.518, adaptive inspirations, Wald Chi-Square=0.211, 
p=0.646, or an interaction between both, Wald Chi-
Square=0.007, p=0.934. The same model with tree depth as 
outcome variable equally yielded no effect from adaptive 
solution space, Wald Chi-Square=0.036, p=0.850, adaptive 
inspirations, Wald Chi-Square=0.294, p=0.588, or the 
interaction between the two factors, Wald Chi-
Square=1.380, p=0.240. Therefore, the adaptations produced 
no change in depth. 
Study 1 Discussion 
In summary, we found some support for a positive effect of 
adaptive inspirations on the breadth of ideation (H2), 
although only from the tree metric. We did not find 
significant effects in either fluency (H1) or depth (H3), 
although we identified a marginal interaction on the former.  

It is not surprising that the inspiration mechanism rather than 
the solution space was behind the change in breadth—it was 
designed to draw greater attention to the ideas (through the 
rating task), and to only show a reasonable amount of 
information per request. The question is why it only affected 
breadth, but not depth. One possible explanation is that the 
rating task may have pushed ideators to focus on originality. 
Eight ideators have said something to this effect. For 
example, one user reported that having to rate other ideas 
encouraged them “to come up with original and feasible 
solutions”. Another ideator reported that rating other ideas 

 Low Fluency Average Fluency High Fluency 

 Random Adaptive Random Adaptive Random Adaptive 

Breadth 2.55 (0.18) 2.77 (0.23) 4.72 (0.13) 4.98 (0.14) 6.88 (0.18) 7.20 (0.23) 

Tree breadth 2.55 (0.24) 2.50 (0.30) 3.85 (0.17)* 4.66 (0.18)* 5.15 (0.24)** 6.82 (0.29)** 

* p < 0.05; ** p < 0.00. 

Table 1 Marginal means (and standard error) for breadth and tree breadth across different ideators of different fluency levels: low 
(1 sd below average), average, and high (1 sd above average). 



“allowed me to see what users said, and I started noticing 
patterns” that allowed her to identify original ideas.  

While we expected the inspiration mechanism to have 
greater effect, we did not think that the solution space would 
have no effect. This could perhaps be explained by issues in 
its usability and comprehension. Many users reported some 
issue with it such as finding it confusing, finding the tagging 
poor or redundant, or just having to scroll through so many 
tags (n=18). In fact, we find that perceptions of how useful 
the solution space was were correlated with perceptions of 
the usability of the system (ρ=0.467, p=0.000) and success 
in the task (ρ=0.216, p=0.022), which could mean that those 
who were confused by it had negative perceptions of the 
system or the task. 
STUDY 2  
We made the following changes to the system for Study 2: 

• We recategorized the pool of ideas based on the manual 
categorization used in the breadth and depth metrics. In 
practice, this means that the solution space would be 
better organized, addressing complaints of poor, 
redundant, or excessive tagging. It should also reduce 
the noise in inspirations (e.g. miscategorized ideas), 
improving their effects. We have also included the ideas 
from Study 1 in the pool of ideas, meaning there are 
more ideas per category and more user models to draw 
from. In total, the system now had 899 ideas from 173 
users, spread across 19 categories. 

• The system now displays the ideas shown as inspirations 
differently—they are colored in blue and display a 
lightbulb icon. They are also always shown alongside 
the ideators’ own ideas. We expect this to increase the 
effect of the inspirations by allowing users to examine 
them longer and more easily refine or combine them. 

• We emphasized the refinement and combination actions. 
We do this in two ways. The first is by focusing on these 
actions in the introductory tutorial, explaining them 
more clearly. The second is by adding stats at the top of 
the idea workspace, mentioning how many original, 
refined, and combined ideas the user has added. We 
expect these changes to increase the usage of the 
refinement and combination actions.  

Method 
In this study, we only examined two conditions: control 
(inspirations and solution space are randomized) and fully 
adaptive (inspirations and solution space adapt to users). Our 
main hypotheses remain the same but due to the changes 
described above we expect a stronger effect in breadth, and 
possibly some effects in fluency and depth as well. 
Study 2 Results 
In total, 76 Prolific users participated in this study (40.8% 
female), 38 subjects in each condition, generating a total of 
483 ideas. Most of them described themselves as non-
Hispanic White (~61%), with the US (~22%) and the UK 
(~24%) having the highest number of participants. 

We once again evaluated the same hypothesis from Study 1: 
H1: fluency will increase due to adaptations; H2: breadth 
will increase due to adaptations; and H3: depth with increase 
due to adaptations. We used the same statistical analyses 
employed in Study 1, with the difference being that now 
there is only one fixed factor, condition. Consequently, we 
only evaluated one interaction, between fluency and 
condition, in the GLMs.  
H1: Fluency did not Change Across Conditions 
Ideators in the control condition generated, on average, 6.29 
ideas (sd=3.07). Those in the adaptive condition generated 
on average 6.39 ideas (sd=4.29). A One-way ANOVA shows 
no difference in fluency between conditions, F(1,74)=0.211, 
p=0.903.  
H2: Adaptations Negatively Affected Tree Breadth 

Fluency  Control Adaptive p 
Low 1.88 (0.29) 2.39 (0.25) 0.190 
Average 4.48 (0.19) 3.97 (0.19) 0.059 
High 7.08 (0.29) 5.56 (0.24) 0.000 

Table 2 Marginal means and standard errors for tree breadth 
in Study 2. 

An ANCOVA showed no effect of condition on breadth, 
F(1,73)=1.280, p=0.262. Tree breadth, on the other hand, 
shows differences. A Mixed GLM shows a significant 
interaction between condition and fluency, F(1,72)=13.09, 
p=0.001. However, unlike Study 1, this time the interaction 
favored the control condition over the adaptive one, showing 
a marginal difference for average fluency ideators and a 
significant different for high fluency. Table 2 details how the 
marginal means change across low, average, and high 
fluency levels. There was also a main effect of condition, 
F(1,72)=5.052, p=0.028. Therefore, we find some evidence 
that an adaptive system hindered performance compared to a 
non-adaptive one. 
H3: No Effects in Depth 
We again found no effects of condition on either depth, Wald 
Chi-Square=0.009, p=0.925, or tree depth, Wald Chi-
Square=0.034, p=0.854. 
Study 2 Discussion 
Like in study 1, we only found breadth effects. However, 
unlike the first study, this was a negative effect (on tree 
breadth only) caused by the adaptations. What could explain 
this difference? We did not find much difference in usage of 
the refinement and combination mechanics, so it is unlikely 
that this extra incentive is at its cause. We also find no reason 
for why the persistence of the inspirations in the workspace 
could have caused such an inversion of effect.  

Therefore, we hypothesize that this striking change in effect 
was due to the new categorization. There was a dramatic 
reduction in the number of categories (54 in the first study to 
19 in the second). It is possible that the number of categories 
was now too small to be meaningful, making them too high-
level to be significant for both the adaptation and the metrics. 



REVISITING THE CATEGORIZATION SCHEME 
To examine the categorization effect on metrics, we 
calculated, for both studies, the number of distinct categories 
users were exposed to through the inspiration mechanism. 
We then estimated an ANCOVA with the number of 
categories as outcome variable, condition as fixed factor, and 
number of inspirations as covariate. For study 1, we find no 
effect of condition on the number of categories users were 
exposed to, F(4,93)=0.535, p=0.66. On average, study 1 
participants across conditions have been exposed to 5.47 
(sd=2.97) categories. Despite this, we still found a positive 
influence of an adaptive system on ideation breadth, 
indicating that that effect is not due to differences in quantity 
of categories, but rather on their quality. Study 2, on the other 
hand, showed a higher number of categories for the control 
condition (M=4.49, SE=0.19) compared to the fully adaptive 
one (M=3.85, SE=0.19), F(2,73)=5.32, p=0.024. A 
difference in the number of categories users were exposed to 
could partially explain the change in effect.  

The remaining differences in effect could be due to the 
chosen ideas being less appropriate for each ideator. If the 
categories are too broad, and if there are more ideas per 
category, it is possible that choosing a random idea from 
within that category may not cause the desired inspiration 
effects. In fact, we find a marginal difference in how useful 
ideators in the control (5.82, sd=1.20) and adaptive (5.18, 
sd=1.66) conditions perceived the inspiration mechanism to 
be (on a 1-7 scale, 7 being the most useful), F(1,74)=3.61, 
p=0.061, indicating a trend towards greater dissatisfaction.  

A categorization that is too high-level (i.e. too few 
categories) could also explain the lack of effects on the 
manual metrics in both studies, diluting nuanced category 
exploration. Therefore, we recalculated the manual metrics 
for both studies. One of the authors of this paper coded all 
ideas for both studies (N=1183) and developed a new 
categorization with 45 total categories. This new scheme 
increased the number of categories by breaking down the 
previous ones. For example, the original scheme had a 
category called Study types, which in the new categorization 
was broken down into categories such as collaborative 
studies or in-person studies. Another researcher then was 
given this new scheme along with 120 uncategorized ideas 
and independently categorized them. Agreement between 
raters was satisfactory, Cohen’s Kappa=0.788.  

With this new scheme, we revisited the analysis of the 
manual metrics in the previous two studies. In Study 1, we 
recalculated an ANCOVA with the new breadth metric as 
outcome variable, both adaptations as factors, and fluency as 
covariate. We found a main effect of adaptive inspirations on 
breadth, F(1,110)=6.200, p=0.014, with adaptive inspiration 
ideators exploring slightly more categories (M=6.61, 
SE=0.19) than those without the adaptive inspirations 
(M=5.96, SE=0.18). We still found no adaptive solution 
space effect, F(1,110)=0.00, p=0.990, as well as no 
interaction between the two factors F(1,110)=0.528, 

p=0.569. As for depth, we still found no effect of either 
adaptive inspirations, Wald Chi-Square=0.057, p=0.812, 
adaptive solution space, Wald Chi-Square=0.001, p=0.976, 
or the interaction between the two factors, Wald Chi-
Square=0.126, p=0.722. These results reinforce those 
obtained through the tree metrics.  

We also redid the analysis for Study 2. To evaluate breadth, 
we recalculated an ANCOVA with the new breadth as 
outcome, condition as factor, and fluency as covariate. This 
time we find no effect of condition on breadth, 
F(1,73)=1.068, p=0.305. We also re-evaluated depth, finding 
no significant effects, Wald Chi-Square=0.034, p=0.854. 
DISCUSSION 
From these two studies, we draw four conclusions. (1) Given 
an appropriate categorization scheme, adaptive inspirations 
can positively influence breadth of ideation. (2) Our 
adaptations, as they were proposed, were not capable of 
improving fluency or depth. (3) The inspiration mechanism 
had a stronger effect compared to the solution space. (4) The 
categorization scheme is key to the adaptations.  

The inspiration mechanism’s effect on breadth could be 
explained by the diversity of ideas presented. In study 2, 
where the variety of categories was decreased, we found 
evidence of the system performing as well or worse than 
control on breadth, potentially because ideas that were too 
similar were being presented to users. This finding is also in 
line with previous work, which found that diversity yields 
diversity [23]. But as we also found from a comparison of 
both studies, a difference in the total quantity of exposure 
categories does not completely explain this effect, as study 1 
still revealed an advantage to adaptive inspirations despite an 
equivalent number of exposure categories. Therefore, we 
argue that with an appropriate categorization the adaptive 
inspiration mechanism is able to better select inspiration 
categories and improve breadth of idea generation. 

In contrast, both studies showed a lack of significant effects 
on both fluency and depth. This suggests that the intended 
effects of the current and adjacent categories were not 
realized. Their intention was to keep users longer in the 
current categories, but for both studies we found 
considerably high likelihoods of users not staying within the 
same category for two consecutive ideas (95% on Study 1; 
85% on Study 2). This lack of effect on depth likely 
contributed to the overall lack of effects on fluency. It may 
be that to be effective, the adaptation mechanism needs to 
better account for the fact that these ideators are likely to 
frequently switch categories. 

We also note that the positive effect found in study 1 sprung 
from the adaptive inspirations, not the solution space. As we 
discussed in the system design, we expected that to be the 
case due to fewer ideas being presented at a time (compared 
to the solution space), as well as the built-in tasks. Both of 
these factors should increase the attention to the ideas that 
were presented, and therefore their effect. However, we also 



acknowledge that in study 1 the solution space may have 
been plagued by usability issues, which may have distracted 
users from its benefits. We attempted to improve the 
usability of the solution space for study 2 by improving the 
categorization scheme, which brought its own set of issues. 

Finally, a contrast between the studies points to the 
importance of the categorization scheme, both for powering 
the adaptations as well as for measuring their effects. The 
two studies showed markedly different results. We attribute 
that in great part to the reduced number of categories. 
Therefore, the right level of categorization abstraction is 
essential. The same applies for metrics. Our initial 
categorization was not detailed enough to capture differences 
between the factors, which was fixed by the later scheme. 

It is worth further discussing the lack of effects in depth and 
fluency. For study 1, we had power to detect small effects on 
fluency (0.26) and breadth (0.08), and medium effects in 
depth (0.3). For study 2, we had power to detect small effects 
on breadth (0.1), medium effects on fluency (0.32) and large 
effects on depth (0.6). All of these were calculated 
considering 1-B=0.8 and our sample sizes. Our sample sizes 
are also in line with previous studies in the literature. 
Therefore, we argue that the null results do not stem from 
lack of power. Instead, we propose a different explanation 
based on past work and the SIAM model.  

Research that used idea exposure as its inspiration 
mechanism has consistently found breadth improvements 
[12,23]. In contrast, inspirations based on simulation 
strategies (i.e. run a scenario in your mind) showed increases 
in depth and fluency, but not breadth [4]. The SIAM model 
points to a compelling conciliation of these results. It 
indicates that breadth improvements stem from the image 
loading loop, while depth improvements come from the idea 
generation loop. It seems, therefore, that idea exposure may 
be able to positively affect the image loading loop, but not 
the idea generation loop. On the other hand, another form of 
inspiration such as the simulation prompts described in Chan 
et al. [4] may be able to positively affect the idea generation 
loop, functioning as a form of mental exercise for exploring 
the currently loaded image in greater depth.  

These results lead to implications for future work on 
CrowdMuse, suggesting the use of different types of 
inspirations for different types of categories. For example, 
instead of showing three ideas in the inspiration panel, it 
could show one (inferred) along with two simulation prompts 
related to the current and adjacent categories. The next step 
could be for CrowdMuse to adapt not only to idea categories, 
but also to cognitive strategies of individual ideators. 

We conclude this discussion by addressing some limitations, 
beginning with the metrics. We built the tree metrics partly 
using a dataset of ideas from another crowd platform. 
Nonetheless, their content is rather similar to ours and it was 
augmented with ideas from our pilots. Furthermore, we 
complement these metrics with manually derived ones. 

Another metric limitation stems from our lack of evaluation 
of product metrics such as the originality and usefulness of 
the final ideas. Therefore, it is unknown whether the 
adaptations influenced the final product or not. 

Another related, but broader, limitation stems from our use 
of discrete categories as the basis for the metrics and the 
system adaptations. This is a simplification of an ideator’s 
cognitive structure, which is much more nuanced and 
complex [18]. However, given the complexity of accurately 
representing this structure, research often turns to categories 
as the basis for analysis (e.g. [3]), as we did in our studies. 
This limits the accuracy of the adaptations. Future work that 
adapts on finer-grained models is likely to yield better 
adaptations and, consequently, results.   

There is also a concern with the high number of tests 
performed in each study, increasing the likelihood of type I 
errors. While we acknowledge this possibility, we note that 
all the tests performed were theoretically grounded, and the 
results are consistent with previous studies in the literature.  

Finally, while we identified the sensitivity that the system 
has to the categorization scheme, there is still much more to 
be understood before reaching conclusions on best practices 
for categorization. Since we only compared two different 
schemes, there is not enough information to infer how the 
effects progress across a range of category numbers. 
Furthermore, there are also limited inferences we can make 
on the nature of categories themselves, rather than simply 
their numbers. In study 1, categories were user generated 
(with minor adjustments), while study 2 categories were 
generated by the researchers. The impact that this difference 
may have caused across both studies is unclear. These factors 
are key for CrowdMuse’s usefulness in a real-world context, 
in which the categorization scheme would frequently change, 
especially at the earlier phases of idea generation, and 
therefore should be systematically evaluated in future work. 
CONCLUSION 
In this paper, we presented and evaluated CrowdMuse, a 
novel system that models and adapts to users to improve their 
ideation performance. We found that given an appropriate 
categorization, the adaptive inspirations were able to 
positively affect breadth of ideation. The adaptive solution 
space did not affect results, though issues of usability may 
have affected its effectiveness. Neither depth nor fluency 
were affected by adaptations. Finally, we also discussed the 
effect that categorization schemes of varying levels can have 
on the adaptations as well as measurements. We expect this 
work to open a new avenue for large-scale brainstorming 
support which can operate in synergy with other existing 
approaches to enhance the creative potential of crowds. 
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